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Carbene, or alkylidene, complexes of transition metals are 
well-known, thoroughly studied species.1 Among the carbene 
complexes for which useful reactivity has been reported, the 
complexes containing the (r;5-cyclopentadienyl)dicarbonyliron [or 
Cp(CO)2Fe] and related iron groups are especially prominent. 
Particularly well developed are the uses of these iron complexes 
in alkylidene transfer reactions with alkenes to give cyclopropanes.2 

Other reactions of these complexes have been developed much 
less extensively. Recently, we reported that these complexes can 
participate in cationic olefinic cyclization reactions,3 and now we 
report that these species can undergo intramolecular C-H insertion 
reactions. 

We have previously reported the facile preparation and uses 
of the stable thiocarbene complex Cp(CO)2Fe+=CHSPh PF6" 
(1) as a reagent for the incorporation of prospective carbene centers 
into a variety of organic systems.4 These incorporations are 
accomplished by means of simple carbanionic addition reactions 
to 1. Thus, copper-promoted addition of (2-phenylethyl)mag-
nesium bromide to 2-cyclohexenone in the presence of tri-
methylsilyl chloride5 followed by enolate addition to 1 gives the 
adduct 2 as a mixture of diastereomers with respect to the iron-
bearing carbon atom. Treatment with trimethyloxonium tetra-
fluoroborate under standard conditions for sulfonium salt for­
mation and spontaneous carbene complex generation leads to 
direct, stereoselective formation of the cyclopentane-fused product 
3 (Scheme I). This product is, at least formally speaking, the 
result of carbene insertion into a benzylic C-H bond of the 
substrate 2. 

In this initial case, we have attempted to optimize the results 
of the cyclization step in order to set a reasonable upper limit for 
the yield of this key step. Through use of 2 that has been purified 
carefully by column chromatography (silica gel), cyclization 
product 3 is obtained in 90% yield.6 In the other brief, exploratory 
studies reported below, we have simply used the adducts corre­
sponding to 2 in crude form and have determined only the overall 
yields from the silyl enol ethers resulting from the initial conjugate 
additions to the alkenone starting materials. 

Iron carbene complexes have previously been shown to undergo 
intramolecular alkene cyclopropanation reactions.7 In the case 
of substrate 4 (obtained as in Scheme I, but with 3-butenyl-
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magnesium bromide as the Grignard reagent), intramolecular 
cyclopropanation and formal allylic C-H insertion occur com­
petitively to give the products 5 and 6, respectively, in a ratio of 
3:2 (eq 1; 51% overall yield). On the other hand, substrate 7 

O Fe(CO)2Cp O H O 

A|ASPh (CHs)3O-BF,- AW< [\\~/ ,„ 

(3:2) 

[obtained by using (4,4-dimethyl-3-butenyl)magnesium bromide], 
containing a more highly substituted and thus more hindered 
double bond, undergoes cyclopentane formation to give 8 exclu­
sively within our limits of detection (<5% by 1H NMR; eq 2; 51% 
overall yield). Formal insertion occurs, albeit less efficiently, even 
in the case of a substrate 9 (obtained by using n-butylmagnesium 
bromide) containing a simple saturated, alkyl side chain (eq 3; 
36% overall yield). 

O Fe(CO)2Cp I H H*\ 
,0* BF4 ^ x L - A ^ - C H , 

(2) 

O Fe(CO)2Cp s H 

- s p h (CH3J3Q* BF4-
(3) 

9 10 11 (2:1) 

The stereoselectivity seen in these reactions may tentatively be 
explained by assuming that the intermediate carbene complexes 
adopt a conformation such as that illustrated in the case of sub­
strate 7 (eq 4). The delineation of the mechanism(s) for the 
further reaction of the intermediates to give the cyclization 
products must await further studies. 

(CH3I3O* BF4' 

• PhSCH3 

Fe+(CO)2Cp 

CH, 

H CH, 

W 

Insertions of carbenes and carbene complexes into C-H bonds 
are certainly well-known reactions,8 but they have not been de­
veloped previously for the above types of iron carbene complexes.9 
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In recent years, the best-developed intramolecular C-H insertion 
reactions have been rhodium-catalyzed reactions of diazo carbonyl 
compounds, which are believed to occur via intermediate rhodium 
carbene complexes.10 In a comparison of the methods, useful 
complementarity exists between the iron carbene and the rho­
dium-catalyzed reactions. From the point of view of synthetic 
strategy, the rhodium-catalyzed ring closures proceed with car­
bon-carbon bond formation a to a carbonyl group, whereas the 
iron-based reactions result in ring closure /3 to a carbonyl group. 
Also, the iron carbene reactions produce cyclopentane rings bearing 
a substituent incorporated stereoselectively at a position 7 to a 
carbonyl group, a position that is not normally subject to direct 
introduction of substituents. Another attractive feature of the 
iron-based reactions is the ease and directness with which fairly 
complex substrates are available from simple starting materials. 

Further, in-depth studies of the iron carbene insertion reaction 
are clearly necessary to define the scope of this new method. The 
effects of other saturated and unsaturated side-chain substituents 
as well as heteroatomic substituents will be explored. 
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The stacking of aromatic systems has relevance to many areas 
of chemistry. For example, it has found recent use as a binding 
element in host-guest chemistry.2 We have described a new class 
of hosts (e.g., molecular tweezer 1) which contain two acridine 
chromophores held syn cofacially by a rigid dibenz[c,/?]acridine 
spacer.3,4 In chloroform, the acridines acted as ir-donor chro-
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Figure 1. Side (A) and top (B) views of crystal packing of molecular 
tweezer 4. Solvent molecules (dichloroethane) have been omitted in A 
for clarity. 

mophores to "cooperatively" sandwich a ir-deficient (acceptor) 
aromatic guest.5 While efficient ir-sandwiching is common when 
driven by the hydrophobic effect,6 it has not been well documented 
in cases where electron donor-acceptor (EDA) interactions are 
the primary binding force.7"9 In this communication we report 
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